Installation
KvikIO can be installed using Conda/Mamba or from source.
Conda/Mamba
We strongly recommend using mamba inplace of conda, which we will do throughout the documentation.
Install the stable release from the rapidsai
channel like:
# Install in existing environment
mamba install -c rapidsai -c conda-forge kvikio
# Create new environment (CUDA 11.8)
mamba create -n kvikio-env -c rapidsai -c conda-forge python=3.10 cuda-version=11.8 kvikio
# Create new environment (CUDA 12.0)
mamba create -n kvikio-env -c rapidsai -c conda-forge python=3.10 cuda-version=12.0 kvikio
Install the nightly release from the rapidsai-nightly
channel like:
# Install in existing environment
mamba install -c rapidsai-nightly -c conda-forge kvikio
# Create new environment (CUDA 11.8)
mamba create -n kvikio-env -c rapidsai-nightly -c conda-forge python=3.10 cuda-version=11.8 kvikio
# Create new environment (CUDA 12.0)
mamba create -n kvikio-env -c rapidsai-nightly -c conda-forge python=3.10 cuda-version=12.0 kvikio
Note
If the nightly install doesn’t work, set channel_priority: flexible
in your .condarc
.
Build from source
In order to setup a development environment run:
# CUDA 11.8
mamba env create --name kvikio-dev --file conda/environments/all_cuda-118_arch-x86_64.yaml
# CUDA 12.0
mamba env create --name kvikio-dev --file conda/environments/all_cuda-120_arch-x86_64.yaml
To build and install the extension run:
./build.sh kvikio
One might have to define CUDA_HOME
to the path to the CUDA installation.
In order to test the installation, run the following:
pytest tests/
And to test performance, run the following:
python benchmarks/single-node-io.py