# cugraph_dgl ## Description [RAPIDS](https://rapids.ai) cugraph_dgl provides a duck-typed version of the [DGLGraph](https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph) class, which uses cugraph for storing graph structure and node/edge feature data. Using cugraph as the backend allows DGL users to access a collection of GPU accelerated algorithms for graph analytics, such as centrality computation and community detection. ## Conda Install and update cugraph-dgl and the required dependencies using the command: ``` conda install mamba -n base -c conda-forge mamba install cugraph-dgl -c rapidsai-nightly -c rapidsai -c pytorch -c conda-forge -c nvidia -c dglteam ``` ## Build from Source ### Create the conda development environment ``` mamba env create -n cugraph_dgl_dev --file conda/cugraph_dgl_dev_11.6.yml ``` ### Install in editable mode ``` pip install -e . ``` ### Run tests ``` pytest tests/* ``` ## Usage ```diff +from cugraph_dgl.convert import cugraph_storage_from_heterograph +cugraph_g = cugraph_storage_from_heterograph(dgl_g) sampler = dgl.dataloading.NeighborSampler( [15, 10, 5], prefetch_node_feats=['feat'], prefetch_labels=['label']) train_dataloader = dgl.dataloading.DataLoader( - dgl_g, + cugraph_g, train_idx, sampler, device=device, batch_size=1024, shuffle=True, drop_last=False, num_workers=0) ```